Neurons for the SLP: How our Nervous System Communicates

9/12/2022

Candace van der Stelt, MS, CCC-SLP

Interdisciplinary Program in Neuroscience

Georgetown University

PhD Student

Outline

- Review of the Basal Ganglia
- Neuroanatomy Review
 - Nervous System
 - Neurons
- Neuronal Communication at the Cellular Level
- Neuronal Communication at the System Level
 - Motor System
- Clinical Application: Basal Ganglia

Learning Objectives

- Describe how neuronal anatomy relates to brain structures, including:
 - Gray and White Matter
 - Cortical and Subcortical
- Identify the parts and functions of a neuron
- Explain how neurons communicate at the cellular and system level

What word comes to mind when you hear *Basal Ganglia*?

Basal Ganglia – Motor Function

Initiating and Maintaining Smooth Movement

Parkinson's Disease

- Hypokinetic Dysarthria
- Resting tremor
- Akinesia: impairment in the initiation of movement
- Bradykinesia: reduction in the velocity & amplitude of movement

Huntington's Disease

- Hyperkinetic Dysarthria
- Ballismus: uncontrolled flinging (ballistic) movements
- Choreiform movements: generalized irregular dance-like movements of the limbs
- Athetoid movements: continuous writhing of the distal portions of the extremities

Anatomy Review

Central and Peripheral Nervous System

- Central Nervous System
 - Brain
 - Cerebellum
 - Brainstem
 - Spinal Cord
- Peripheral Nervous System
 - Connects the body (skin, muscles) to the Brain and Spinal Cord
 - Cranial Nerves!

Gray Matter vs. White Matter in the Brain

Coronal View

Sagittal View

Axial View

Gray vs. White Matter in the Spinal Cord

Dorsal (toward the back)

Let's make a connection!

- Grey Matter = comprised of neuronal cell bodies
- White Matter = comprised on neuronal cell axons
- The **cortex** is the outermost layer of the brain, made up of cell bodies.
- The subcortical region of the brain has both.
 - White Matter = Tracts
 - Gray Matter = Nuclei (usually)
 - Nuclei = typically, clusters of cell bodies in the CNS
 - Ganglia = typically, clusters of cell bodies in the PNS

Neuronal Communication -Cellular Level

Cell Body

Dendrites = contain receptors that can bind Neurotransmitters

Nucleus = contains DNA

<u>Axon</u>

Axon = conducts electrical message (action potential)

Myelin = speeds up conduction of the action potential

Axon Terminal = contains proteins important for creating and packaging neurotransmitters

Synaptic Buttons = binds synaptic vesicles for release of Neurotransmitters

What is a Neurotransmitter?

Definition

- Molecules that are:
 - Synthesized within a neuron
 - Packaged w/in vesicles
 - Released from axon
 - Activate Receptors
 - Removed or Recycled

Examples

- Dopamine
- Serotonin
- Acetylcholine
- Glutamate = excitatory
- GABA = inhibitory

Types of Receptors

Neurotransmitter binds directly to channel protein and mediates the flow of ions across the membrane for a brief time

Neurotransmitter binds to G protein-coupled receptor and activates a second messenger system – mediating the opening of ion channels for a longer period of time

Neuronal Communication: The Action Potential

What happens in a Synapse?

Neuronal Communication: The Action Potential

- Intracellular space is Negative at rest
- NTs can have an excitatory or inhibitory effect
 - Action Potential = excitatory effect

The Role of Myelin

- Myelin is created by other cells
 - CNS: Oligodendrocytes
 - PNS: Schwann Cells
- Myelin creates saltatory conduction
- This speeds up the neural signal

Neuronal Communication -System Level

Messaging in the Motor System

• Primary Motor Cortex

• Voluntary Movement (Force, extent, direction, speed)

• Supplementary and Pre- Motor Area

- Motor planning of complex sequences
- Primary Sensory Cortex
 - Provides sensory/proprioceptive feedback for movement

Motor Neurons

- Upper motor neurons (UMN) = cell bodies located in the brain and synapse with a lower motor neuron
 - Fully located in the CNS
 - Damage = spasticity, hypertonia
- Lower motor neurons (LMN) = cell body located in the spinal cord, synapses onto the muscle
 - Directly responsible for stimulating the target muscle
 - Cell bodies in the CNS, but axons in the PNS
 - Damage = Flaccidity, hypotonia

Motor Pathways

- Corticospinal Tract (2 segments)
 - Innervates our Trunk and Limbs
 - Pathway: Primary Motor Cortex→corona radiata→internal capsule→brainstem (crosses in medulla)→ventro/lateral spinal cord

Motor Pathways

- Corticospinal Tract (2 segments)
 - Pathway: Primary Motor Cortex→corona radiata→internal capsule→brainstem (crosses in medulla)→ventro/lateral spinal cord
 - Lateral Tract: contralateral limb movements
 - Ventral Tract: bilateral innervation for trunk and neck

Lateral corticospinal tract	Anterior corticospinal tract	
	Brainstem pathways	
	FI	
4		

Motor Pathways

- Corticobulbar Tract
 - Innervate Face & Neck
 - Pathway: Primary Motor Cortex→corona radiata→internal capsule→cranial nerves in midbrain pons, and medulla→Head and Neck
- Both receive input from the Corticostriatal pathway (Basal Ganglia!)

Clinical Application: Basal Ganglia Disorders

- D1 DIRECT pathway: INCREASE activity to the thalamus & EXCITATION of the cerebral cortex.
- **D2 INDIRECT pathway:** DECREASE activity of thalamus & DECREASE activity of the cerebral cortex.

- D1 DIRECT pathway: INCREASE activity to the thalamus & EXCITATION of the cerebral cortex.
- Damage = hypokinesia

• D2 - INDIRECT pathway: DECREASE activity of thalamus & DECREASE activity of the cerebral cortex.

Pharmacological Treatments Target Dopamine Levels

Treatment for Parkinson's

- Levodopa (L-Dopa)
 - Enzyme converts it into dopamine
- Carbidopa
 - Prevents L-Dopa from being broken down before it reaches the brain

Treatment for Huntington's

- Xenazine (tetrabenazine)
 - Prevents uptake into synaptic vesicles
 - Leads to depletion of dopamine in the neuron

Thank you for listening! Questions?